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Introduction
The behaviour of inviscid flow at hypersonic regimes is characterised by strong
shocks, very high temperatures and chemical reactions whose relaxation times
are much smaller than the typical time scales of transport phenomena. These
complex physical processes are strongly coupled to each other, thus making a
difficult task the numerical solution of Euler equations for the hypersonic flow
of a mixture of chemically reactive specie. In order to obtain shock capturing
methods and to avoid non-physical solutions, conservative schemes must be
used. Also physical constraints, such as non-negativity of densities and
energies, must be respected. Furthermore, the nonlinear chemistry terms lead
to severe time-step limitations for the time explicit schemes, well beyond the
CFL stability restriction. Therefore, some kinds of implicit in time discretization
have been used (see Häuser et al., 1989; Schröder and Hartman, 1992; Toon and
Kwak, 1992). A semi-implicit, finite volume scheme, is here proposed, which
solves the two-dimensional Euler equations for a mixture of chemically reactive
specie on general, unstructured grids. The specie here considered are N2, O2,
NO, N and O. Three vibrational energies are taken into account for the diatomic
specie.

The time step advancing procedure is based on a semi-implicit discretization
in order to have good stability properties typical of implicit scheme and low
computational costs typical of explicit schemes. The time discretization of the
highly non-linear terms is implicit. The advective terms are discretized by a
semi-implicit upwind method based on a flux vector splitting. This
discretization procedure results in a set of weakly nonlinear, partially decoupled
equations. Specifically, the discrete mass conservation equations are fully
decoupled from all the other equations, the discrete equations for the vibrational
energies are decoupled from the momentum and total energy equation, finally
the momentum and energy equations are mutually decoupled. The solution
algorithm is described as follows. First, the set of equations involving the non-
linear reaction terms are solved by an iterative method. Once the specie
densities have been determined, the vibrational energies are computed by
solving three linear systems, whose matrices are M-matrices. Finally,
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momentum and the total energy are computed by solving three linear systems,
whose matrices are M-matrices. We prove the existence of a discretized solution
of the full nonlinear system for any time step. The present scheme is fully
conservative and ensures non-negativity of the densities and vibrational
energies for arbitrarily large time steps.

The equations
The two dimensional Euler equations with chemically reactive terms are
written in integral form as:

(1a)

(1b)

(1c)

(1d)

(1e)

with k = 1, … ,5 and j = 1, 2, 3; S is the 2D integration volume and ∂S denotes
its boundary. The vector n = [nx, ny]

T denotes the outer normal. The vector v
= [vx, vy]T denotes velocity and v · n denotes the outer normal velocity
component.

Equation (1a) represents the conservation of the mass densities where ρ1, ρ2,
ρ3, ρ4 and ρ5 are the mass densities of the specie N2, O2, NO, N and O,
respectively. The total mass density is denoted by ρ = ρ1 + ρ2+ ρ3 + ρ4 + ρ5.
Each source term Wk models the chemical reactions involving the kth specie. 

Equation (1b) represents the conservation of the vibrational energies, Ev1, Ev2
and Ev3 associated with the diatomic specie N2, O2 and NO, respectively. The
vibrational energies Evj are correlated to the vibrational temperatures Tvj and
the equilibrium energies Eeqj are correlated to the translational temperature T
as follows:
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with j = 1, 2, 3. The constants θj are the characteristic vibrational temperatures
obtained via spectroscopic measurements. They are taken to be θ1 = 3395K, θ2
= 2239K and θ3 = 2817K (Candler, 1988). The Landau-Teller relaxation time τj
in equation (1b) are given by

where

and 1, 2, 3, 4, 5 are the molecular weights of the chemical specie N2,
O2, NO, N and O respectively. The unit of pressure, temperature, and molecular
mass are Pascal, Kelvin and kg/mole. These semi-empirical relations are known
to be valid over a temperature range from 300K to 9000K (Candler, 1988; Häuser
et al., 1989; Millikan and White, 1963). 

Equations (1c)-(1d) express the linear momenta conservation, whose
components, in the x and y directions, are mx = ρvx and my = ρvy, respectively. 

Equation (1e) expresses the conservation of the total energy E. Equations
(1a)-(1e) are closed with the following equation of state

where p denotes the pressure, = 8.3143J/(molK) is the universal gas constant
and T is the translational temperature satisfying the following relation
(Candler, 1988; Häuser et al., 1989): 

where hk
0K is the heat of formation of specie k at the 0K reference temperature,

and Cvk is the constant volume specific heat of specie k. Notice that Cvk are not
the complete specific heats at constant volume, but they are only the part due to
molecular translation and rotation, and they are constants. They take the value
Cvk = 2.5 / k for the diatomic specie, while Cvk = 1.5 / k for the
monatomic specie (Candler, 1988).

Remark 1. System (1a)-(1e) can be written as

(2)
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where

and

(3)

with j = 1, 2, 3.

The Dunn and Kang and Park air model
The chemical reactions are modelled by the Dunn and Kang or Park air model
(Park, 1984; 1985; Yu et al., 1988), in which the ions, the free electron and the
associated reactions are not included. This model comprises 17 elementary
reactions (15 dissociation/recombination reactions and two exchange reactions)
among the five specie N2, O2, NO, N and O. The chemical reactions considered
in the model are: 

where M represents a collision partner or catalytic molecule; it can be any one
of the five specie.

Remark 2. The Dunn and Kang or Park air model can be written as
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where W(U) = [W1, W2, W3, W4, W5]T and

The forward and backward reaction rates are given by

where we have set

with j = 1, 2, 3.
Remark 3. The reaction rates Kf and Kb are assumed to be functions of T,

Tv1, Tv2, Tv3 and they are described by the modified forms of the Arrhenius
equation. These reaction rates Kf, Kb take the functional form

where Ts is a function of the translational and vibrational temperatures and κ,
θ, Ta are coefficients that depend on the specific reaction. The values of the
coefficients κ, θ, Ta and the precise form of the function Ts for each reaction can
be found in Candler (1988); Park (1985); Yu et al. (1988).
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In the case of the Park air model the backward reaction rates are determined
via the equilibrium constant KE, which are obtained by using a fourth-order
polynomial fit of experimental spectroscopic data:

where Z = 10000/T. The coefficients Ai can be found in (Candler, 1988; Park,
1985).

Remark 4. Notice that the nitrogen mass fraction of the molecule NO is given
by 

so that, by denoting with ρn the density of total mass of nitrogen and with ρ the
density of total mass of oxygen, we have

Since ρN and ρo are conserved quantities, it follows that

Remark 5. Defining

and the vector of densities

the source term W(U) can be expressed as a function of ρ and R. In the
appendix it is shown that the source terms W(U) = W(ρ, R) can be written in
the form C(ρ, R)ρ, where C(ρ, R) is a 5 × 5 matrix with continuous entries Ci,j(ρ,
R), such that: 

(b)

(a)
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The partial fluxes
The flux in the direction n is given by

(4)

and, due to the homogeneity of F, it satisfies

where J(U, n) is the Jacobian of F with respect to U.
Remark 6. The homogeneous property of the flux F will be used to develop a

flux vector splitting

where

(5)

with A+ and A– square matrices. For a non-homogeneous flux, given F+ and F–

it is also possible to find some A+ and A– which satisfy (5). This will permit to
define a semi-implicit scheme analogous to the one developed here.

System (2) is hyperbolic and it is well known that the Jacobian J(U, n) has a
complete set of eigenvectors with real eigenvalues (LeVeque, 1990), so that J(U,
n) is diagonalizable as follows

(6)

where

is the eigenvalues matrix, moreover

is the frozen speed of sound and X(U, n) is the right eigenvectors matrix. By
using (6) equation (4) can be written as

(c)
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where

(7)

The partial fluxes corresponding to each eigenvalue are defined as λFλ(U, n),
where λ takes the values v · n, v · n + c and v · n – c. Thus, the flux F(U, n) is
the sum of partial fluxes corresponding to each eigenvalue.

Remark 7. In order to define the numerical fluxes, the vector functions (7) can
be rewritten as

(8)

where

and

Construction of the numerical flux
The numerical scheme to be developed for system (2) is obtained by a flux
vector splitting technique. Therefore, the flux F(U, n) will be split in the sum of
a positive and a negative flux

The positive and negative fluxes are defined as
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where

as suggested in Steger and Warming (1981). Next, by equation (8), the positive
flux can be rewritten as follows:

(9)

where

and the non negative functions

(10)

are introduced for convenience.

Finite volume formulation
The finite volume numerical scheme proposed in this paper can be developed
for a general unstructured grid. However, we restrict our attention here to grids
arising from partitions of the plane into non-overlapping quadrilaterals of finite
area (see Figure 1). Each quadrilateral is labelled by an integer coordinate pair
as (i, j), the edge in common between the quadrilaterals (i, j) and (i + 1, j) is
labelled by (i + 1/2, j) and the edge in common between the quadrilaterals (i, j)
and (i, j + 1) is labelled by (i, j + 1/2). Next, li+1/2, j is defined as the length of the
edge (i + 1/2, j) and li,j+1/2 is defined as the length of the edge (i, j + 1/2). Finally,
Si,j is the area of the quadrilateral (i, j). The vector ni+1/2, j denotes the outer
normal to the edge (i + 1/2, j) of the cell (i, j) and similarly ni, j + 1/2 denotes the
outer normal to edge (i, j + 1/2) of the cell (i, j). The semi-discrete finite volume
approximation of system (2) can be written as

(11)
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where i = 1, 2, …, Nx, j = 1, 2, …, Ny, Ui, j is an approximation of the mean value
of U inside the cell (i, j).

Remark 8. The functions F(U, V, n) are approximations of the edge fluxes.
For internal edges these functions are taken to be

(12)

namely, they are as in the standard upwind technique (LeVeque, 1990). For
border edges the fluxes F(U, V, n) must be modified in order to satisfy the
boundary conditions.

Finite volume scheme for densities
Any standard methods could be used for the time discretization of the ordinary
differential system (11), unfortunately, explicit schemes have severe time step
limitations, whereas fully implicit schemes lead to the solution of large
nonlinear systems. The approach followed in this paper consists in using a
semi-implicit scheme, where only a few terms are discretized implicitly in time.
Denoting by

the vector of the first five components of U , we can write the first five
components of the flux F(U, V, n) by using equations (12), (9) and (10) as
follows

Figure 1.
Space grid

(i–1,j)

(i–1,j+1)

(i,j+1)

ni,j+1/2ni–1/2,j

ni,j–1/2 ni+1/2,j

(i+1,j)

(i+1,j–1)

(i,j–1)

(i–1,j–1)

(i,j)
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By using the fact that U|[1,5] + ρ and remark 5 the source term Z(U) for the first
five components can be written as

Then, the system (11) for the first five components takes the form

where

(13)

are non negative numbers. Using forward finite difference to approximate dρi,
j/dt and computing ai,j, bi,j, ci,j and di,j at the time step n, the semi-implicit
scheme for the densities is obtained. The resulting scheme can be written as

(14)

The system (14) can be written in stencil notation as

(15)

An appropriate choice of the edge fluxes in the following four boundaries
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is now necessary in order to close system (15). Without loss of generality, only
the flux at the border ∂left is considered (see Figure 2). So it is enough to find an
appropriate discretization for

We now consider various possible cases:

Solid boundary
In the case of solid boundary we apply the usual condition v · n = 0, so that, the
fluxes F(U, n) for the first five components become

and system (15) at the left boundary becomes

where e(1)
i,j = an

i,j + cn
i,j + dn

i,j.

Supersonic inlet
All the characteristics are incoming and we must specify the external
quantities. In this case F|[1,5](U0,j, U1,j, – n1/2,j) = –ρ0,jv0,j · n1/2,j < 0 and system
(15) becomes

Figure 2.
Left border

(0,j)

(0,j+1)

(1,j+1)

n1,j+1/2n1/2,j

n1,j–1/2 n3/2,j

(2,j)

(2,j–1)

(1,j–1)

(0,j–1)

(1,j)
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Free outlet
In this case the flux depends only on the internal quantities, F|[1,5](U0,j, U1,j,
–n1/2,j) = –ρ0,j v1,j · n1/2,j > 0 and system (15) becomes

where e
(2)
1, j + e

(1)
1, j – l1/2, jν1, j · n1/2, j.

Remark 9. In general, the system (15) with boundary conditions becomes

where bcn
i,j ≥ 0 and it is non zero only at the boundary, and an

i,j, b
n
i,j, c

n
i,j, d

n
i,j ≥ 0.

Here, an
i,j, b

n
i,j, c

n
i,j, and dn

i,j are as in (13) (with U evaluated at time step n) and must
be eventually modified at the boundary. 

These semi-implicit formulations of the boundary conditions allow us to
prove the non-negativity of the densities and of the vibrational energies.

Equations (15) constitute a 5 by 5 block five-diagonal system, in which only the
main diagonal blocks C(ρ, Rn

i,j) are nonlinear. The solution of the nonlinear
system (15) allows to compute ρ n+1

i,j ,  so that a decoupling of the densities from
the other discretized quantities results.

Remark 10. The system of equations (15) will be solved by an iterative
procedure. Observe that system (15) can be written as D(x)x + Mx = b where
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D(x) = diag(–C(xi,j, R
n+1
i,j    )). The solution x will be the value of ρn+1. A convenient

solution technique is the following Jacoby-type iteration

where the diagonal matrix Γ improves the condition number of the iteration
matrix [Γ + D(xs) + M]–1. The iterative process is described in Table I.

For the procedure described in Table I the following results are proved in the
Appendix.

(1) The quantities defined by the iterative procedure of Table I are non-
negative for all s. It follows that at convergence ρn+1 is non-negative. 

(2) The solution algorithm for system (15) conserves the total amount of
nitrogen and oxygen. The conservation of the total amount of nitrogen
and oxygen is essential in order to avoid spurious numerical transforma-
tion of nitrogen into oxygen and vice versa. The conservation of these
quantities is used in stopping test for the iterations in Table I. 

(3) For all ∆t > 0 exists at least one non-negative solution of the non-linear
system (15). 

(4) If ∆t is small enough, then solution of (15) is unique and the iterative
process converges.

Remark 11. In practical computation instead of solving the linear system in
Table I it is enough to approximate the solution with one or more iterations of a
non-negative iterative scheme. The system in Table I can be written in the quasi
two colour form (see Ortega (1988) for coloration):

(1) Set x0
i,j = ρ ni,j

(2) For s = 0, 1, 2,… until convergence set xs+1 = Φ(xs) where xs+1 is defined as the solution of
the linear system

(3) At convergence set ρ n+1
i,j = xs+1

i,j
Table I.

Densities solver
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where L, U ≥ 0 and D1(x1, x2), D2(x1, x2) are M-matrices. A convenient iterative
solution procedure is the following:

(16)

and few iterations with (16) are enough for approximating the solution of the
linear system. This solution procedure corresponds to a splitting scheme for Ax
= b as follows

Here,

Remark 12. The scheme (15) is only first order in time accurate for the chemical
source terms. It is possible to improve the time step accuracy with simple
modifications. This possibility is examined in Bertolazzi (1996).

Finite volume scheme for vibrational energies
The time discretization of the equations for the vibrational energies
can be developed along the same lines as for the densities. The flux F(U, V, n)
for the sixth through eighth components becomes, by equations (12), (9) and
(10)

where U|[6,8] + [Ev1, Ev2, Ev3]T. The source term Z(U) for the sixth through
eighth components can be written by (3) as
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Therefore, the system (11) for the sixth through eighth components takes the form

where ai,j, bi,j, ci,j and di,j are defined in (13). Using forward finite difference
to approximate d(Evk)i,j/dt and computing ai,j, bi,j, ci,j and di,j at the time step n,
a semi-implicit scheme for the vibrational energies is obtained

(17)

Here we have defined

The boundary conditions are analogous to the boundary conditions for the
densities.
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Remark 13. As remarked for (15), system (17) can be written in stencil
notation as

(18)

where

It is proved in the Appendix that the solution of system (18) is non-negative.
Notice that in equation (18) the vibrational energies Evk are mutually separated.
Thus, three five-diagonal linear systems instead of one 3 by 3 block five-
diagonal linear system must be solved.

Numerical scheme for energy and momenta terms
The positive flux of equation (11) for the three last components is given by

Setting X = [mx, my, E)T the discretization of (2) for the last three components
becomes

(19)

where
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and

In stencil notation system (19) becomes

Notice that in equation (19) momenta mx, my and total energy E are mutually
separated. Thus, three five-diagonal linear systems instead of one 3 by 3 block
five diagonal linear systems must be solved. At the boundary the matrices must
be changed to satisfy boundary conditions. Here, without loss of generality,
only the boundary conditions at ∂left are considered (see Figure 2). So it is
enough to find an appropriate discretization for

Solid boundary)
The fluxes F(U, n) for the last three components are

In the case of solid boundary we have the usual condition v · n = 0, so that
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Supersonic inlet boundary
All the characteristic are inlet and we must specify the external quantities. In
this case,

Free outlet
In this case the flux depends only of the internal quantities,

Second order in time accuracy
Equations (11) constitute a large system of ordinary differential equations in the
unknowns Ui,j. We can use any kind of standard solver for ODE, for example in
the previous sections a semi-implicit version of Euler scheme was used. The
previous scheme was only first order in time accurate, better accuracy can be
reached using, for example, Runge-Kutta schemes. A second order in time
scheme can be obtained estimating the coefficients of the linear and non-linear
systems at time step n + 1/2 by using the previous scheme. The resulting
scheme is very close to the scheme found in Collatz (1960) and for the densities
results in the following scheme:

(20)
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Notice that the non linear system (20) has the same structure of (14) so that we
can use the procedure of Remark 11 to solve it. Analogous schemes result for
vibrational energies. Momenta and total energy result in the following
scheme:

where

and

Second order in space accuracy
The upwind flux (12) is only first order accurate in space. It is possible to
improve the accuracy by some flux-limiter technique substituting the upwind
flux (12) with the following:
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where θ, for the present, is an unspecified parameter. Note that if θ = 0 we
obtain a second order flux, while with θ = 1 we obtain the original first order
flux. The scheme with θ = 0 is unstable, however increasing (locally) the value
of θ we can obtain a quasi second order scheme. The approach used here uses
some ideas from the high resolution schemes extensively studied in the
literature (Harten, 1983; 1984; 1987; Harten et al., 1976; Rider, 1993; Saltzman,
1994; Shu, 1987; Swanson and Turkel, 1992; Sweby, 1984). Here we use a simpler
approach based on an euristic limiter which does not use e.g. wave
decomposition. To limit the value of θ we use the following procedure: 

• For each cell (i, j) we calculate that the local CFL numbers in the
horizontal and vertical direction ch

i,j, c
v
i,j as follows

where

• For each cell (i, j) the ratios related with the local CFL numbers are
evaluated

• At this point the θs associated to the edges are computed as follows

In the numerical procedure we have the edges fluxes split into two parts. The
former is the upwind flux, the latter is the central flux. In the first half step the
central fluxes are taken explicit, then into the second half step the central fluxes
are evaluated at time step n + 1/2. The upwind fluxes are evaluated semi-
implicitly as in the previous sections. In this way we have a minimal change in
the solver because the contributions of the central fluxes are in the known term
of linear and non-linear systems while the matrices, whose coefficient are
multiplied by some θs, still remain M-matrices.
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Numerical tests
One dimensional test cases
Sod test. The first test case is a classical one, the Sod test (Sod, 1978); it is a one
dimensional test case, defined in the interval [0,1], with the following initial
values

The air is supposed composed of only N2 so that γ = 1 + β = 1.4. Figures 3-6
show the solution at t = 0.24s. The solution was computed by using a fixed time
step ∆t = 0.24s/50 = 0.0048s with a uniform grid of 100 cells.

Lax test. The second test case is another classical one, the Lax test (Lax, 1954);
it is a one dimensional test case, defined in the interval [0,1], with the following
initial values

As in the previous test air is supposed composed of only N2 so that γ = 1 + β
= 1.4. Figures 7-10 show the solution at t = 0.15s. The solution was computed
by using a fixed time step ∆t = 0.15s/60 = 0.0025s with an uniform grid of 100
cells.

Figure 3.
Solution of Sod problem

at time t = 0.24s; mass
density distribution.
The solid line is the

exact solution
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Figure 4.
Solution of Sod problem
at time t = 0.24s;
velocity distribution.
The solid line is the
exact solution

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.
Solution of Sod problem
at time t = 0.24s;
pressure distribution.
The solid line is the
exact solution
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Figure 6.
Solution of Sod 

problem at time
t = 0.24s; internal

energy (E/ρ – u2/2)
distribution. The solid

line is the exact solution
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Figure 7.
Solution of Lax
problem at time

t = 0.15s; mass density
distribution. The solid

line is the exact solution
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Figure 8.
Solution of Lax
problem at time
t = 0.15s; velocity
distribution. The solid
line is the exact solution
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Figure 9.
Solution of Lax
problem at time
t = 0.15s; pressure
distribution. The solid
line is the exact solution
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1D shock tube
The test case is defined as a one-dimensional tube with length 1m and with the
following initial conditions:

(1) for x < 0.5; T = 9,000K, ρ = 2.532Kg/m3, u = 0m/s.

(2) for x > 0.5; T = 300K, ρ = 1.156Kg/m3, u = 0m/s.

In order to compare our results with those in Abgrall et al. (1992), instead of 
Dunn and Kang model (Dunn and Kang, 1973), the Park dissociation and 
recombination model (Park, 1985) is used. At 9,000K with ρ = 2.532Kg/m3

the Park model gives approximately the mass distribution described in Table II.
Frozen case. In this case we test the solver without chemistry source terms.

The solution is presented at time t = 160µs and was computed by using a fixed
time step ∆t = 160µs/60 = 2.6

–
µs with an uniform grid of 100 cells. The results

are compared with those in Abgrall et al. (1992) (which use a grid of 101 points).
We can see that the proposed code is slightly more diffusive than that in Abgrall
et al. (1992) but the agreement is good. In Figure 11 one can see mass fraction
distributions. In Figures 12-15 we have displayed the density, velocity, pressure
and temperature.

Figure 10.
Solution of Lax 
problem at time

t = 0.15s; internal
energy (E/ρ – u2/2)

distribution. The solid
line is the exact solution
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T(K) ρ(Kg/m3) N2(%) O2(%) NO(%) N(%) O(%)

9,000 2.532 44.2 7.36 × 10–2 2.3 31.4 22
300 1.156 76.7 23.3 0 0 0 Table II.
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Test with chemistry source terms. The solution is presented at time t = 160µs
and was computed by using a fixed time step ∆t = 160µs/120 = 1.3

–
µs with a

uniform grid of 200 cells. The results are compared with those in Abgrall et al.

Figure 11.
Solution of Shock 
Tube problem at time 
t = 160µs; mass fraction
distributions. Non-
reactive case
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Figure 12.
Solution of Shock 
Tube problem at time 
t = 160µs; scaled mass
density distribution.
Non-reactive case
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(1992) (which use a grid of 201 points). A comparison of the computed results
with those in Abgrall et al. (1992) shows that the agreement is good except for
the velocity that is more smeared. In Figure 16 we can see mass fractions

Figure 13.
Solution of Shock 

Tube problem at time 
t = 160µs; velocity
distribution. Non-

reactive case
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Figure 14.
Solution of Shock 

Tube problem at time 
t = 160µs; scaled

pressure distributions.
Non-reactive case
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distributions, in Figure 18, mass density distribution and in Figure 21,
temperature distribution. In Figure 17 we can note the production of NO at the
contact discontinuity, this can explains the small wiggles in the velocity and
pressure (Figures 19-20) as in Abgrall et al. (1992).

Figure 15.
Solution of Shock 
Tube problem at time 
t = 160µs; scaled
temperature
distribution. Non-
reactive case

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.00 0.25 0.50 0.75 1.00

Figure 16.
Solution of Shock 
Tube problem at time 
t = 160µs; mass fraction
distributions. Non-
reactive case
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Two dimensional test cases
The 2D test cases are taken from Groth and Gottlieb (1993). The problems
considered are the following: the single, complex and double Mach reflections in

Figure 17.
Solution of Shock 

Tube problem at time 
t = 160µs; NO mass

fraction distribution.
Reactive case
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Figure 18.
Solution of Shock 

Tube problem at time 
t = 160µs; scaled mass

density distribution.
Reactive case
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air of a planar incident shock from a wedge; the diffraction of a planar high-
Mach-number incident shock at an expansion corner in oxygen; the blunt-body
flow in nitrogen. Except for the last, they are all non-stationary flow problems

Figure 19.
Solution of Shock 
Tube problem at time 
t = 160µs; velocity
distribution. 
Reactive case
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Figure 20.
Solution of Shock 
Tube problem at time
t = 160µs; scaled
pressure distribution.
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and use the Dunn and Kang dissociation and recombination model for the
source terms.

Single Mach reflection in air
This test case is the oblique reflection of a Ms = 2.03 planar shock wave propaga-
ting in air incident on a 270 compression corner. The value of the temperature and
density of the quiescent air ahead of the shock are 299.2K and 0.387Kg/m3. The
mass fraction of the quiescent air is assumed to be composed of 76.7 per cent of
N2 and 23.3 per cent of O2. The value of pressure, temperature and density of
the supersonic inlet were specified by solving the Rankine-Hugoniot conditions.
In this test case non-equilibrium effects are insignificant. So it is a test for the
capabilities of the gas-dynamic solver. The solution is presented at time 
t = 100µs and was computed by using a fixed time step ∆t = 100µs/300 = 0.3

–µs
with a 300 × 100 node mesh. Figure 22 depicts the density contour while Figure
23 depicts the wall density distributions. The results are in good agreement
with those in Groth and Gottlieb (1993).

Complex Mach reflection in air
This test case is the oblique reflection of a Ms + 10.37 planar shock wave
propagating in air incident on a 100 compression corner. The value of the
temperature and density of the quiescent air ahead of the shock are 299K and
0.0777Kg/m3, respectively. The mass fraction of the quiescent air is assumed to
be composed of 76.7 per cent of N2 and 23.3 per cent of O2. The value of

Figure 21.
Solution of Shock 

Tube problem at time
t = 160µs; scaled

temperature distribution.
Reactive case
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pressure, temperature and density of the supersonic inlet were specified by
solving the Rankine-Hugoniot conditions. The solution is presented at time
t = 20µs and was computed by using a fixed time step ∆t = 20µs/600 = 0.03

–µs
with a 450 × 125 node mesh. Figures 24 and 25 depict respectively the density
contour and the wall density distributions. The results are in good agreement
with those in Groth and Gottlieb (1993).

Figure 23.
Single Mach reflection
in air; wall mass density
distribution

5

4

3

2

1
–0.100 –0.075 –0.050 –0.025 –0.000

Figure 22.
Single Mach reflection in
air; mass density ratio
(ρ/ρ0) distribution, where
ρ0 is the density of
quiescent air. Axes units
are in metres

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0.07 0.05 0.03 0.01 0 –0.01

g



A finite volume
scheme

921

Double Mach reflection in air
This test case is the oblique reflection of a Ms = 8.7 planar shock wave
propagating in air incident on a 270 compression corner. The value of the
temperature and density of the quiescent air ahead of the shock are 299.2K and
0.0476Kg/m3, respectively. The mass fraction of the quiescent air is assumed to
be composed of 76.7 per cent of N2 and 23.3 per cent of O2. The value of
pressure, temperature and density of the supersonic inlet were specified by
solving the Rankine-Hugoniot conditions. The solution is presented at time t =
22µs and was computed by using a fixed time step ∆t = 22µs/700 ≈ 0.0314µs
with a 500 × 100 node mesh. Figures 26 and 27 depict respectively the density
contour and the wall density distributions. The results are in good agreement
with those in Groth and Gottlieb (1993).

Shock wave diffraction in oxygen
This test case is the prediction of the non-stationary planar flow of a Ms = 12
planar shock wave of dissociated oxygen around a 150 expansion corner. The
value of the temperature and density of the quiescent air ahead of the shock
are 300K and 0.0342Kg/m3. The post-shock state of the oxygen is approxi-
mately 23 per cent dissociated. The value of pressure, temperature and
density of the supersonic inlet were specified by solving the Rankine-
Hugoniot conditions. The solution is presented at time t = 21.7µs after the
shock travel the corner and was computed by using a fixed time step ∆t =
21.7µs/420 ≈ 0.0512µs with a 250 × 100 node mesh. Figure 28 depicts the
density contour. The results are in good agreement with those in Groth and
Gottlieb (1993).

Blunt-body flow in nitrogen
This test case is the prediction of the stationary planar flow of pure nitrogen
around a two-dimensional circular cylinder with axis of symmetry perpendicu-
lar to the free-stream flow directions. The radius of the cylinder is 2.54cm while
the free-stream density ρ∞, temperature T∞ and velocity u∞ are 0.0055Kg/m3,
1400K and 5500m/s, respectively. The solution was computed by using a 100 ×

Figure 24.
Complex mach

reflection in air; mass
density ratio (ρ/ρ0)

distribution, where ρ0 is
the density of quiescent

air. Axes units are
in metres
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100 node mesh. Figure 29 depicts the density contour. The results are in good
agreement with those in Groth and Gottlieb (1993).

The iterative procedure for the solution of the non linear system for the
densities is described in Remark 11. Similar schemes are used for the solution
of the linear system for vibrational energies and velocities-energy. The
residual r = b – Ax is scaled component by component by the diagonal of A
as follows:

Figure 26.
Double Mach reflection
in air; mass density
ratio (ρ/ρ0) distribution,
where ρ0 is the density
of quiescent air. Axes
units are in metres
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mass density
distribution
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The iterations are stopped if the scaled residual is less than 10–6. To speed up
the solution procedure for the densities, the system is solved at first assuming
no-chemistry present, and then this solution is used as the starting point for the
complete iterative procedure. Table III is a summary of the computational costs
of the scheme in terms of the average number of iteration per time step. This
table contains only the average values of the second half step so that, in
practice, the average total cost per time step is about twice the value in the table.

Figure 27.
Single mass reflection in

air; wall mass density
distribution
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Shock wave diffraction

in oxygen; mass density
ratio (ρ/ρ0) distribution,
where ρ0 is the density

of quiescent air. Axes
units are in metres
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Conclusions
The present finite volume scheme allows numerical solutions of hypersonic
flows to be obtained at a relatively low computational cost. Positivity of the
densities and vibrational energies is assured, for the first order scheme, even
when large time steps are used. The method is quite general and can be
extended to three dimensional problems, where the reduction of the
computational cost is essential.

Test case NoChem Chem EV UV E

Single Mach 4 0 4.018 5.037 4.013
Complex Mach 4 5.992 5 5.008 4.998
Double Mach 4 5.966 5 5.004 4.349
Diffraction 4 3.998 5.027 5 4.027

Notes: NoChem = iteration for density without activated chemistry, Chem = iteration for
density with activated chemistry, EV = iteration for vibrational energies, UV = iterations for
velocity system, E = iterations for total energy system

Table III.
Average iterations

Figure 29.
Blunt-body flow in
nitrogen; mass density
ratio (ρ/ρ∞) distribution,
where ρ∞ = 5500kg/m3.
Axes units are in metres
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Appendix
We prove here the theorems stated in the paper. We denote by IR+ and IRn

+ the following subsets
of IR and IRn

Lemma 1. Let v ∈ IRn be such that ∑n
i=1 vi = 0 and let f: IRn

+
|→ IR+ be a continuous function, such

that, for those k which satisfy vk < 0, f(x)/xk is also continuous on IRn
+.

Then f(x)v can be written as C(x)x = f(x)v, where C(x) is a matrix with continuous entries
such that

(21)

Proof
Let v = v+ + v– where

(22)

By (22), it is possible to define the matrix C(x)

where ei are the vector of the canonical base in IRn, i.e. e i = [0, …, 0, 1, 0, …, 0]T. By a
straightforward computation it is easy to verify that (21) holds. 

Theorem 1. The source terms W(ρ, R) can be written in the form C(ρ, R)ρ, where C(ρ, R) is a
5 × 5 matrix with continuous entries, such that:

Proof
The source terms W(ρ, R) can be written as

where we have set

For each fixed value of R, the pair fj, vj satisfies the hypothesis of Lemma 1, so that we can state
that

(c)

(b)

(a)
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with C(j)(ρ, R) that satisfies the properties (a)-(c). Then it is possible to define 

and C(ρ, R) has obviously the properties (a)-(c).
Theorem 2 For each i = 1, 2, …, Nx and j = 1, 2, …, Ny, let C(i,j) be a matrix such that

(23)

for each i, j, let δi,j, αi,j, βi,j, γi,j, ωi,j ∈ IR+ with δi,j > 0. For each i, j, let xi,j, zi,j ∈ IRNz and consider
the linear system in the vector unknown xi,j, defined by the stencil

(24)

with i = 1, 2, …, Nx and j = 1, 2, …, Ny. The matrix of coefficients is an M-matrix. Therefore, if bi,j
≥ 0, then the solution xi,j is such that xi,j ≥ 0 for all i, j.

Proof
Observe that the matrix of the system defined by (24) has positive elements on the main diagonal
and non-positive elsewhere. The properties (23) imply that this matrix is strictly diagonal
dominant, so that it is an M-matrix. By definition, this implies that xi,j ≥ 0.

Corollary 1. The quantities xs+1 defined the iterative procedure of Table I are non-negative for
all s

Proof
We apply theorem 2 with

and

Corollary 2. The scheme in equation (18) maintains the vibrational energies non-negative.

Proof
we apply the theorem with
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and

Theorem 3. The solutions of system (15) conserve the total amount of nitrogen and oxygen.

Proof
At the convergence the source term is

(25)

By direct computation one can see that

and also

(26)

The following relations are also true

By multiplying system (15) at the left by the vectors [1, 0, α, 1, 0], [0, 1, 1 – α, 0, 1], and by using
(25-26) we obtain

(27)

where x = ρN, ρO. Adding equations (27) over all the cells it follows now

(28)

where the cancellation is due to the conservative form of (27). Equation (28) states that the
variation of total quantity of nitrogen or oxygen depends only on the boundary terms, so that the
possible changes are due only to the boundary conditions.

Theorem 4. For any n and fixed ∆t there exists at least one non-negative solution of the non-
linear system (15). 

Proof
It will be sufficient to prove that the map Φ defined in Table I has a non-negative fixed point. For
simplicity, we consider the map with Γi,j = 0. From Corollary 1 it follows that Φ(v) ≥ 0 for all v ≥
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0. Denote by x = Φ(v) the solution of the linear system of Table I. Introducing the vector e = [1, 1,
1, 1, 1]T, we can write

The dependence on C(vi,j, R
n
i,j) disappears because eTC(vi,j, R

n
i,j) = 0 by condition (c) of Theorem 1.

Next, we can write

Since xi,j is known to be equal to ρ n+1
i,j at the boundary, it follows that

(29)

This suggest to define the norm
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By using this norm and in view of (29) one sees that ||Φ(v)|| = K, for all v ≥ 0 where

Introducing now the convex compact set

one sees that Φ is a continuous map from K into itself. By the Brouwer fixed point theorem
(Zeidler, 1986), this map has at least one fixed point, that is a non-negative solution of the system
(15) 

Remark 14. Notice that the iteration map Φ can be written as:

Then, we can write

Also, in the proof of Corollary 1 we have seen that Γ + D(v) + M is an M-matrix, so that (Γ + D(v)
+ M)–1 ≥ 0.

An estimate of the norm of the matrix (Γ + D(v) + M)–1 is now obtained.

Proof
Let e be a vector with all components equal to 1. By a straightforward computation one has

(30)

Multiplying now the equation (30) by (Γ + D(x) + M(x))–1 ≥ 0, one has

(31)

From equation (31) it follows then ||G(Γ + D(x) + M(x))–1||1 ≤ 1.

Corollary 3

Theorem 5 If ∆t is small enough, then the map Φ : K |→ K is contractive

Proof
Take x, y ∈ K and let N(x) = Γ + D(x) + M. Then

Lemma 2. It is
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(32)

Taking the ||·||1 norm in (32), one then has

(33)

Observe that

and since D(z) is regular enough and does not depend on ∆t, it is possible to find a constant L
independent of ∆t such that

Defining

from (33) one has

Notice that for ∆t |→ 0, we have g||b|| bounded and g |→ 0. Consequently,

for ∆t small enough. Thus, the map Φ : K |→ K becomes contractive.
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